On the numerical integration of the Schrodinger equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L11
(http://iopscience.iop.org/0305-4470/21/1/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:34

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the numerical integration of the Schrödinger equation

Carlos G Díaz ${ }^{\dagger}$, Francisco M Fernández \ddagger and Eduardo A Castro \ddagger
\dagger Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, La Plata, Argentina
\ddagger Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), División Química Teórica, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina

Received 21 October 1987

Abstract

A finite-difference method for solving the Schrödinger eigenvalue equation is generalised in order to treat a larger number of potentials. Results are shown for asymmetrical two-well oscillators.

There are at present several powerful methods for solving one-dimensional eigenvalue problems. Among them, those that can be run on small microcomputers have recently received much attention (see [1,2] and references therein). In particular, Killingbeck's method [1,2] has recently proved to be suitable for treating difficult two-point boundary value problems [3].

In its present form, Killingbeck's method is rather limited because it does not apply to one-dimensional quantum mechanical models with potentials that are not parity invariant. The purpose of this letter is to develop a generalised version of this procedure that is free from this drawback.

We consider the eigenvalue equation

$$
\begin{equation*}
F^{\prime \prime}(x)=Q(E, x) F(x) \tag{1}
\end{equation*}
$$

where $Q(E, x)=V(x)-E$, with the boundary conditions

$$
\begin{equation*}
F(a)=F(b)=0 \quad a<b . \tag{2}
\end{equation*}
$$

Following Killingbeck $[1,2]$ we calculate $F(x+h)$ in terms of $F(x)$ and $F(x-h)$ from

$$
\begin{equation*}
F(x+h)=G(E, h, x) F(x)-F(x-h) \tag{3}
\end{equation*}
$$

If G is chosen to be (the discussion below also holds for larger-order perturbation approaches [2])

$$
\begin{equation*}
G(E, h, x)=2+h^{2} Q(E, x)+\frac{1}{12} h^{4} Q(E, x)^{2} \tag{4}
\end{equation*}
$$

then the eigenvalue error is $\mathrm{O}\left(h^{4}\right)$ as $h \rightarrow 0$ [1] provided that the starting point is sufficiently accurate.

When $b=-a$ and $V(-x)=V(x)$ the appropriate starting point is obtained from the relation $F(-h)= \pm F(h)[1,2]$. In order to treat other cases we propose to make use of the fact that $F(x)$ can be written

$$
\begin{equation*}
F(x)=A(x)+c B(x) \tag{5}
\end{equation*}
$$

where A and B are two linearly independent solutions of (1) satisfying

$$
\begin{equation*}
A\left(x_{0}\right)=B^{\prime}\left(x_{0}\right)=1 \quad A^{\prime}\left(x_{0}\right)=B\left(x_{0}\right)=0 \tag{6}
\end{equation*}
$$

for an arbitrary x_{0} value belonging to (a, b). After introducing (5) into (2) we have

$$
\begin{equation*}
A(a) B(b)-A(b) B(a)=0 \tag{7}
\end{equation*}
$$

The starting point for the finite difference process is easily obtained from

$$
\begin{aligned}
& F^{\prime}(x)=\{[F(x+h)-F(x-h)] /(2 h)\}-\left(h^{2} F^{\prime \prime \prime}(x) / 6\right)+\mathrm{O}\left(h^{4}\right) \\
& F^{\prime \prime \prime}(x)=Q^{\prime}(E, x) F(x)+Q(E, x) F^{\prime}(x)
\end{aligned}
$$

and equation (3). For instance, a straightforward calculation shows that

$$
\begin{align*}
& A\left(x_{0}-h\right)=\frac{1}{2} G\left(E, h, x_{0}\right)-\frac{1}{6} h^{3} Q^{\prime}\left(E, x_{0}\right)+\mathrm{O}\left(h^{4}\right) \\
& B\left(x_{0}-h\right)=-h-\frac{1}{6} h^{3} Q\left(E, x_{0}\right)+\mathrm{O}\left(h^{4}\right) \tag{8}
\end{align*}
$$

The procedure is very simple. Beginning from (6) and (8) we proceed backwards and forwards with (3) for $A(x)$ and $B(x)$ in order to calculate $A(a), B(a), A(b)$ and $B(b)$. The roots $E(h)$ of (7) are close approximations to the actual eigenvalues if h is small enough. The limits $E(0)$ are estimated by means of the Richardson extrapolation [4].

As an example we consider the potential

$$
\begin{equation*}
V(x)=2\left(v_{2} x^{2}+v_{3} x^{3}+v_{4} x^{4}\right) \tag{9}
\end{equation*}
$$

which has two minima if $9 v_{3}^{2}>32 v_{2} v_{4}$. The boundary conditions $F(\pm \infty)=0$ are replaced by $F(a)=F(b)=0$, where $a \ll x_{0} \ll b$, and x_{0} is chosen to be the coordinate of the deepest minimum.

Some of the parameters v_{j} considered by Somorjai and Hornig [5] are shown in table 1. Results for the lowest lying eigenvalues are compared in table 2. The interval

Table 1. Parameters v, for a number of asymmetrical two-well potentials V_{h}.

	V_{6}	V_{7}	V_{8}	V_{9}	V_{10}
v_{2}	-5.1199	-7.6284	-7.0	-7.77	-7.905
v_{3}	0.0152	0.3	0.5	0.4939	0.5812
v_{4}	0.65	1.0	1.0	0.98	1.0

Table 2. Lowest eigenvalues E_{n} for the potentials V_{k} in table 1.

	n	Present	$[5]$
V_{6}	0	-14.27023328	-14.85
	1	-13.82738203	-14.40
V_{7}	0	-26.18805761	-26.18
	1	-17.71166882	-17.71
V_{8}	0	-24.51759766	-24.51
	1	-12.09137508	-12.09
V_{9}	0	-31.77054522	-31.76
	1	-16.80891863	-16.80
	2	-16.75530997	-16.78
V_{10}	0	-33.86238635	-33.85
	1	-18.53241603	-18.43

$b=-a=4$ is found to be large enough for all the cases; and roots of (7) have been obtained through the bisection method (p 220 of [4]). The Richardson extrapolation [4] has been used to estimate $E(0)$ from $E(h)$, where $h=0.05,0.02$ and 0.01 .

The algorithm here developed allows Killingbeck's method [1,2] to be applied to a wider class of quantum mechnical problems while retaining the simplicity that makes it suitable for microcomputer use.

References

[1] Killingbeck J P 1979 Comput. Phys. Commun. 18 211; 1982 J. Phys. B: At. Mol. Phys. 15 829; 1983 Microcomputer Quantum Mechanics 2nd edn (Bristol: Adam Hilger) ch 10; 1985 Rep. Prog. Phys. 48 54
[2] Killingbeck J P 1986 Phys. Lett. 115A 301
[3] Killingbeck J P 1987 J. Phys. A: Math. Gen. 201411
[4] Dahlquist G and Björck $\AA 1974$ Numerical Methods (New York: Prentice-Hall) p 269
[5] Somorjai R L and Hornig D F 1962 J. Chem. Phys. 361980

