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LEITER TO THE EDITOR 
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Abstract. A finite-difference method for solving the Schrodinger eigenvalue equation is 
generalised in order to treat a larger number of potentials. Results are shown for asym- 
metrical two-well oscillators. 

There are at present several powerful methods for solving one-dimensional eigenvalue 
problems. Among them, those that can be run on small microcomputers have recently 
received much attention (see [ 1 , 2 ]  and references therein). In particular, Killingbeck’s 
method [ 1,2] has recently proved to be suitable for treating difficult two-point boundary 
value problems [3]. 

In its present form, Killingbeck’s method is rather limited because it does not apply 
to one-dimensional quantum mechanical models with potentials that are not parity 
invariant. The purpose of this letter is to develop a generalised version of this procedure 
that is free from this drawback. 

We consider the eigenvalue equation 

F ” ( x )  = Q ( E ,  x ) F ( x )  ( 1 )  

F ( a )  = F ( b )  = 0 a < b. (2) 

where Q( E,  x) = V ( x )  - E, with the boundary conditions 

Following Killingbeck [ l ,  21 we calculate F ( x +  h )  in terms of F ( x )  and F ( x  - h )  
from 

F ( x + h ) = G ( E ,  h , x ) F ( x ) - F ( ~ - h ) .  (3) 
If G is chosen to be (the discussion below also holds for larger-order perturbation 
approaches [2]) 

G(E,  h , x ) = 2 + h 2 Q ( E ,  x ) + A h 4 Q ( E , x ) ’  (4) 

then the eigenvalue error is O(h4) as h + 0 [ l ]  provided that the starting point is 
sufficiently accurate. 

When b = -a  and V ( - x )  = V ( x )  the appropriate starting point is obtained from 
the relation F ( - h )  = h F ( h )  [ l ,  21. In order to treat other cases we propose to make 
use of the fact that F ( x )  can be written 

F ( x )  = A ( x ) + c B ( x )  (5) 
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where A and B are two linearly independent solutions of (1) satisfying 

A(xo) = B’(xo) = 1 

A(a)B(b)  - A(b)B(a )  = 0. 

A‘(x0) = B(x0) = 0 (6 )  

(7) 

for an arbitrary xo value belonging to (a,  b) .  After introducing ( 5 )  into ( 2 )  we have 

The starting point for the finite difference process is easily obtained from 

F ‘ ( x )  = { [ F ( x +  h )  - F ( x  - h ) ] / ( 2 h ) }  - (h2F” (x ) /6 )+O(h4)  

F” ’ (x )=  Q ’ ( E , x ) F ( x ) + Q ( E , x ) F ’ ( x )  

and equation (3). For instance, a straightforward calculation shows that 

A(X,  - h )  = +G( E, h, x0)  - i h 3 ~ ’ (  E, x 0 )  + O( h4) 

B ( x , - ~ )  = - h - i h 3 9 ( ~ ,  xo)+o(h4). (8) 

The procedure is very simple. Beginning from (6 )  and (8) we proceed backwards 
and forwards with (3) for A ( x )  and B ( x )  in order to calculate A(a) ,B(a ) ,  A(b)  and 
B ( b ) .  The roots E ( h )  of (7) are close approximations to the actual eigenvalues if h 
is small enough. The limits E ( 0 )  are estimated by means of the Richardson extrapola- 
tion [4]. 

As an example we consider the potential 

V ( x )  = 2( u2x2 + u3x3  + u4x4)  ( 9 )  
which has two minima if 9 u : > 3 2 u 2 u 4 .  The boundary conditions F(*co)=O are 
replaced by F ( a )  = F ( b )  =0, where a<< xo<< b, and xo is chosen to be the coordinate 
of the deepest minimum. 

Some of the parameters U, considered by Somorjai and Hornig [ 5 ]  are shown in 
table 1. Results for the lowest lying eigenvalues are compared in table 2 .  The interval 

Table 1. Parameters U, for a number of asymmetrical two-well potentials V,. 

0 2  -5.1199 -7.6284 -7.0 -7.77 -7.905 
L’? 0.0152 0.3 0.5 0.4939 0.5812 
04 0.65 1 .o 1 .o 0.98 1 .o 

Table 2. Lowest eigenvalues E,, for the potentials V, in table 1 

n Present [51 

‘6 0 - 14.270 233 28 
1 -13.827 382 03 

v, 0 -26.188 057 61 
1 -17.711 668 82 

V8 0 -24.517 597 66 
1 -12.091 375 08 

v9 0 -31.770 545 22 
1 -16.808 918 63 
2 -16.755 309 97 

VI,, 0 -33.862 38635 
1 -18.532 416 03 

-14.85 
- 14.40 
-26.18 
-17.71 
-24.51 
-12.09 
-31.76 
- 16.80 
-16.78 
-33.85 
- 18.43 
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6 = - a  = 4 is found to be large enough for all the cases; and roots of (7) have been 
obtained through the bisection method (p  220 of [4]). The Richardson extrapolation 
[4] has been used to estimate E ( 0 )  from E ( h ) ,  where h =0.05, 0.02 and 0.01. 

The algorithm here developed allows Killingbeck’s method [ 1,2 ] to be applied to 
a wider class of quantum mechnical problems while retaining the simplicity that makes 
it suitable for microcomputer use. 
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